Long time behavior of stochastic hard ball systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

for Typical Hard Ball Systems

We consider the system of N (≥ 2) hard balls with masses m1, . . . , mN and radius r in the flat torus TL = R /L · Z of size L, ν ≥ 3. We prove the ergodicity (actually, the Bernoulli mixing property) of such systems for almost every selection (m1, . . . , mN ; L) of the outer geometric parameters. This theorem complements my earlier result that proved the same, almost sure ergodicity for the c...

متن کامل

Hard Ball Systems Are Completely Hyperbolic

We consider the system of N (≥ 2) elastically colliding hard balls with masses m1, . . . , mN , radius r, moving uniformly in the flat torus T ν L = R /L · Z , ν ≥ 2. It is proved here that the relevant Lyapunov exponents of the flow do not vanish for almost every (N + 1)-tuple (m1, . . . , mN ;L) of the outer geometric parameters.

متن کامل

Hard Ball Systems Are Fully Hyperbolic

We consider the system of N (≥ 2) elastically colliding hard balls with masses m1, . . . , mN , radius r, moving uniformly in the flat torus TL = R/L · Z , ν ≥ 2. It is proved here that the relevant Lyapunov exponents of the flow do not vanish for almost every (N + 1)-tuple (m1, . . . ,mN ;L) of the outer geometric parameters.

متن کامل

Long-time behavior of stochastic model with multi-particle synchronization

We consider a basic stochastic particle system consisting ofN identical particles with isotropic k-particle synchronization, k ≥ 2. In the limit when both number of particles N and time t = t(N) grow to infinity we study an asymptotic behavior of a coordinate spread of the particle system. We describe three time stages of t(N) for which a qualitative behavior of the system is completely differe...

متن کامل

Proof of the Ergodic Hypothesis for Typical Hard Ball Systems

We consider the system of N (≥ 2) hard balls with masses m1, . . . , mN and radius r in the flat torus TL = R /L · Z of size L, ν ≥ 3. We prove the ergodicity (actually, the Bernoulli mixing property) of such systems for almost every selection (m1, . . . , mN ; L) of the outer geometric parameters. This theorem complements my earlier result that proved the same, almost sure ergodicity for the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2016

ISSN: 1350-7265

DOI: 10.3150/14-bej672